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C O M P O S I T E  E L E C T R O D Y N A M I C  L I N E R  

R. M .  Z a i d e l '  UDC 534 

A multilayer liner made of a composition of two materials with different conductivities is 
considered. The fractions of the components in the layers are varied so that the effective 
conductivity increases in the direction of  magnetic-field diffusion under a special law that 
allows one to obtain an analytical solution. It is shown for  a particular example that using 
a temperature criterion taking into account the density, heat capacity, and thermal conductivity 
of the components, it is possible to produce a liner for which the magnetic-field amplitude can 
be increased by 30% and the velocity and energy can be increased by a factor of  1.6 and 2.7, 
respectively, compared to the original version of a homogeneous metal liner. 

I n t r o d u c t i o n .  Electrodynamic accelerators in which a projectile is accelerated by the pressure of a 
pulsed magnetic field have been designed for more than forty years. The history of the design of magnetic-field 
concentrators, known as magnetocumulative generators (MC-generators) of the MK-1 and MK-2 types, and 
their operating principles are covered in [1, pp. 65-90]. 

A detailed review of theoretical studies and developments of MK-generators of different types is given 
in [2]. Results of the research performed over forty years in different countries in the field of generation and 
application of ultrahigh pulsed magnetic fields are summarized in a review [3]. 

As noted in [1], much attention has been given to the use of MK-2-type systems for acceleration of 
metal bodies with cosmic velocities. In particular, it was reported that an aluminum ring with a weight of 
approximately 2 g was accelerated to a velocity of about 100 km/sec, although the ring evaporated in this 
case. 

In both cases - -  compression of an initial magnetic field in MK-l-type systems and acceleration 
of macroparticles by magnetic-field pressure - -  important factors influencing the results are melting and 
evaporation of the liner, which are due to the concentration of the magnetic field and conduction currents 
near the liner edge that  is in contact with the magnetic field. 

A method of slowing down the process of heating of the liner to a critical temperature is the precooling of 
the liner to the liquid-hydrogen temperature 15 K [4]. More accurate account of the various factors influencing 
the motion of the liner requires the use of a computer [5, 6]. Comparison of calculations with experiments was 
made in a number of papers (see, for example, [7, 8]). The issues of the choice of optimal liner parameters 
are considered in [9]. In particular, according to [9], replacing the liner material, for example, copper by 
aluminum, it is possible to increase the projectile velocity by factor of two, and with replacement of aluminum 
by beryllium, the velocity increases by a factor of 1.5. 

Heating on the boundary can be by lowered by increasing the skin-layer thickness, for which the 
conductivity of the liner material should increase in the direction of magnetic-field diffusion. Analytical 
solutions of model problems with conductivity depending on the coordinate by a particular law are given in [10- 
12]. It is shown that the Joule heat released on the boundary decreases in this case. However, for the beginning 
of ablation, the determining parameter is temperature and a decrease in conductivity can be accompanied 
by a decrease in heat capacity, for example, when a porous metal is used. Therefore, in considering applied 
problems, it is necessary to allow for the other characteristics of the liner material: density, heat capacity. 
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and thermal conductivity. With allowance for these factors, Stankevich and Shvetsov [13] determined, using a 
numerical method, the maximum permissible liner velocities for temperatures below critical values (melting 
or volatilization points) and reported some results for a bimetal (tungsten and beryllium) liner. 

1. Cho ice  of M o d e l  a n d  Ca l cu l a t i on  of  F ie ld  Diffusion.  The required variation in conductivity 
or(z) across the liner thickness can be implemented by various technological methods. We consider as an 
example a liner consisting of N layers with thickness h. In the ith layer (i = 1, 2 , . . . ,  N), the material with 
higher conductivity crl has thickness ai, and the material with lower conductivity a2 has thickness hi, so that 
ai + hi = h. The general thickness of the liner is L = Nh. 

The volume concentration of the first component in the ith layer is c~i = ai/h, and the volume 
concentration of the second component in the ith layer is fli = hi~h, where Oil + fli = 1. The x coordinate is 
reckoned from the left end, to which magnetic field Ho(t) parallel to the plane of the liner is applied. The 
number of layers is N and their thickness h should be such that in passage from the ith layer to a neighboring 
layer, the relative variation in the concentrations c~i and fli is rather small. 

It is known [4] that the penetration of  ̀a pulsed magnetic field into the material  of a liner is described 
by the diffusion equation 

OH(x,t) 0 D(x) (1.1) 
Ot Ox Ox 

with the boundary conditions 

H(x = O,t) = Ho(t), H(x  = L,t) = 0. (1.2) 

In Eq. (1.1), the diffusivity D(x) is related to the conductivity a(x) by 

D(z) = A/a(z ) ,  (1.3) 

where A is a constant. As noted in [4], the magnetic properties of liner materials can be ignored since high 
magnetic field, far exceeding saturation fields, are considered. In the Gaussian system of units, A = c2/(4,v), 
where c is the velocity of light. The volumetric density of Joulean losses in unit t ime is 

1 D(x)(OH'~ 2 
w(x, t) = 4--~ \ ax ,1 " (1.4) 

The nonuniform Joulcan heat release across the liner thickness gives rise to heat flows and the 
temperature levels of. The rate of this process depends on the thermal diffusivity X- The reference data 
of [14] show that for materials such as copper, aluminum, and beryllium the following condition is satisfied: 

x / D  < 10 -2 . (L.5) 

During diffusion of the magnetic field through the liner, heat exchange takes place between the points separated 

by a distance of the order of I = LVF-X/D. With allowance for (1.5), we obtain l /L  < 0.1. This means that 
accumulation of" Joulean heat Q(x, t) at each point of the liner proceeds adiabatically, and, hence: it can be 
calculated by integrating w(x,  t) from (1.4) with respect to time: 

t 

= / w(x , t )d t .  (1.6) Q(x,t) 

As noted in [4], most of the phenomena related to magnetic-field diffusion are little sensitive to the 
pulse shape Ho(t) in tim first boundary condition (1.2). In view of this, the calculations can be simplified by 
considering the exponentially increasing field 

Ho(t) = H exp ( t /T) ,  (1.7) 

where H is a constant and T is the effective time, equal with accuracy to a factor of the order of unity to the 
time of increase in the field on the boundary of" the liner. According to [4], nearly exponential growth of" the 
field is observed in MK-l- type facilities, which use the magnetic-flux compression principle. 
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Condition (1.7) allows one to write the solution of Eq. (1.1) in the form 

H(z, t) = Ho(t)f(x), (1.8) 

where the function f(x) is a solution of the equation 

subject to the boundary conditions 

f (x = 0) = 1, f ( z  = L) = 0. (1.10) 

We consider an ordinary case where the conduct ivi ty  of the liner is constant across the thickness: 

a(x)  = const = a0, D(x) = c o n s t  = A/ao = Do. (1.11) 

The t ime of diffusion through this liner is defined by 

ro = L2/Do. (1.12) 

A solution of Eq. (1.9) subject  to conditions (1.10), (1.11) is 

fo(x) = sinh[~ (1 - x/i)]/sinhq, q = ~-~, po = volT. (1.I3) 

Substitution of (1.13) into (1.8) and (1.4) in the case of a homogeneous liner gives the following formula for 
the density of Joulean losses: 

wo(x, t) = 1/(47rT)[H0(t)]2{cosh[T/(1 - x/L)]/sinhrl} 2. (1.14) 

This function decreases monotonically with increase in x, and, hence, the degree of nonuniformity of the 
heating is given by the relation 

540 = wo(x = O, t)/wo(x = L, t) = (cosh y)2. (1.15) 

The ability of a liner to confine a magnetic field can be characterized by the magnetic flux (I) that  passes 
through the right boundary of the liner x = L: 

t 

r = - D ( z  = L) f OH(x,t) ~=L Ox dt. (1.16) 
- - 0 0  

By analogy with [4], we define the dimension of the skin layer by the formula 

r = Ho(t)S. (1.17) 

Using (1.13) and (1.16), for a homogeneous liner, we obtain 

SoIL = 1/(q s inhq) .  (1.t8) 

The  effectiveness of a liner whose conductivity a(x) increases with increase in x can be shown by 
considering a liner of the same thickness L and assuming tha t  

a ( x ) = a ( 1 - k x / L )  -2, D ( x ) = D ( O ) ( 1 - k x / i )  2, D(O)=A/a, 0 < k <  1. (1.1.9) 

The case of a homogeneous liner is obtained here at k = 0. A solution is sought in the form (1.8), and the 
function f(x) satisfies the equation 

d__~[(l_k..s ] d  x~ 2df(x) ] ~ j  - ~-ff f (x )  = 0, (1.20) 

where, by analogy with (1.12) and (1.13), we introduce the  notat ion 

r = L2/D(O), p = r/T. (1.2I) 
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Equation (1.20) subject  to conditions (1.10) has a solution 

f ( x ) = y ~ l [ l - ( l - k ) " ] - l + g ~ 2 [ 1 - ( 1 - k ) - u ]  -1, y =  t - k L ,  A1 = ( # - 1 ) / 2 ,  
(1.22) 

~2=-(~+1)/2, z = ~h  + 4 ; / ~  ~- 

Substituting (1.22) into (1.4), we obtain the density of Joulean losses for a composite  liner: 

w(x,t) = 1 [H0(t)]2 k 2 47r----T P [~9(x)]211 - (1 - 1~)#]-2, ~ ( x )  = ~ l y  A1 - z~2yA2(1 - 1~) tt. (1 .23)  

By analogy with (1.15), we write the relation 

1 
M = w(O, t ) /w(L, t )  = [~(0)/~(L)] -2 = --7 [Al(1 - k) - ' h  - A2(1 - k)-'~2] ~. (1.24) #- 

It is not dimcult  to verify that  as k -~ 0, formula (1.24) becomes (I.15). Subst i tut ing (1.22) into (I.16) and 
(1.17), we obtain the dimension S of the skin layer for a composite liner: 

S/L = ( k ~ / p ) [ ( 1  - k) ~ - (1 - k ) ~ ]  -~.  (1.2.5) 

As ~ -* 0, formula (~.25) becomes (1.1S). 
The quantity M from (1.24) depends on the parameters p and k, which can be changed to obtain the 

required value of M. Using (1.23), it is possible to show that  the least value of w(x, t) is at one of the interior 
points of the segment (0, L), and the largest value is on one of the boundaries. 

In a homogeneous liner, the greatest heat release occurs on the left boundary, and from (1.14) we 
obtain 

wo(x = O, t) = (1/(47rT))[Ho(t)]2Uo, Ho(t) = Ho exp (t /T),  U0 = (cosh T//sinh77)2. (1.26) 

Similarly, from (1.23) we have 

w ( x = O , t ) =  - - 1  [H(t)]2V ' H ( t ) = H e x p ( t / r ) ,  U =  - -  [ ~ / ~ , +  t 2 ]  2, , = 1 - (1 - ]~) ' .  ( 1 .~7 )  
4~T p 

We note that in the last two formulas, H ~- H0. Formula (1.6) takes the simple form 

T w(x, t). (1.28) Q(~, t) = 

Thus, the calculation of field' diffusion and heat release is completed. 
2. C o m p a r i s o n  of  T w o  T y p e s  of  L ine r .  We denote the specific heat of the first and second 

(omponents by C1 and C2, respectively. The heat capacity of a composite liner at each point is evaluated 
from the formula 

C(x) = Cla(x) + C2fl(x), a(x) + fl(x) = 1, (2.1) 

where a(x), ~(x) are the volume concentrations of the components.  Let O(x,t) be a local increase in 
temperature. Then,  

O(x, t) = Q(x, t ) /C(x).  ('2.'2) 

In order that the tempera ture  nowhere exceed the critical value determined by the less resistant component.  
the heating at the ext reme points must be the same: 0(0, t) = O(L, t). For this, as follows from (1.28) and 
(2.2), the following equality should be satisfied: 

w(O, t)/C(O) = w(L, t)/C(L). (2.3) 

Using (1.24), we can write condition (2.3) in the form 

M = % "~ = C(O)/C(L). (2.4) 
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In the case considered, the components with different conductivities form alternating layers in which 
conduction currents flow parallel to the interface boundaries. This configuration corresponds to the parallel 
connection of two conductors, and, hence, the effective conductivity is evaluated from the formula 

a(x) = ~rla(Z) + a2fl(x) = o'(1 - kx /L )  -2 (2..5) 

since the function ~r(x) should coincide with (1.19). In addition, we assume that on the right boundary there 
is only the first component present, i.e., a ( n )  = 1, fl(L) = 0, and a(L) = al. Since a(z)  +/3(x)  = 1, from 
(2.5) we obtain 

= ( z  - 2  - R ) ( 1  - R )  - 1 ,  = (1 - z - 2 ) ( 1  - R )  - 1 ,  

z = (1 - kxlL)l(1 - k ) ,  n = a 2 / o ,  < 1. ( 2 . 6 )  

From (2.6) it follows that ~3(x) > 0 for all x; the function a(x) decreases as x decreases from the value 
a(L)  = 1 to the value a(0) = [(1 - k) 2 - R]/(1 - R). For a(0)  > 0, the following condition should be satisfied: 

0 < k <  1 - V ~ .  (2.7) 

Let Pl and p2 be the densities of the components. Then,  the  specific masses rnl and m 2 o f  the components 
and the specific mass m of the liner are evaluated from the  formulas 

g L 
r n l - = P l / a ( x )  d x = p l L ( 1 - k - R ) ( 1 - R )  -1,  m 2 = p 2  f ~(x) d x = p 2 L k ( 1 - R )  - I ,  

o o (2.8) 
m = m I + m 2  ----- m 0 ~ ,  6 = (1 -- k - R + kp2/pl)(1 - R) -1, 

where mo = plL  is the specific mass of a homogeneous liner made of the first (more high-conducting) 
component. We substitute (2.6) into (2.1): 

C(z)  = C1[(1 - C2/C1)z -2 + C2/C1 - R]/(1 - R), (2.9) 

7 = C(O)/C(n)  = [(1 - C2/Cl)(1 - k) 2 + C2/C1 - R]/(1 - R). 

In our case, both the composite liner and the homogeneous liners made of the material of the first 
component have the same thickness L. Thus, Do = D(x  = L) = Di = D(0)(1 - k) 2, i.e., D(0) = D0/(1 - k) 2, 
and the parameters p0 and p are related by 

Po = p/(1 - k) 2. (2.10) 

In addition, we assume that  the critical temperature is determined by the first component, so that for both 
liners, the critical temperature  is the same. Under these assumptions, we obtain the ratio of the fields Ho(t) 
and H(t)  from (1.26) and (1.27), respectively, at which both liners at points with highest magnetic-field 
strength have identical heating. According to (1.26) and (1.28), for the homogeneous liner, the heating on the 
left boundary is 

i [Ho(t)12Uo/C1. (2.11) 00(  = 0 , t )  = 

Similarly, for the composite liner, from (1.27) and (1.28) we have 

1 
O(x = 0, t) = ~ [H(t)]2U/C(O). (2.12) 

By virtue of the above assumptions, the left sides of Eqs. (2.11) and (2.12) should be equal. Hence, using 
the designation of 7 from (2.9), we obtain ~ = [H(t)]2/[Ho(t)] 2 = 7Uo/U. The magnetic-field pressure on 
the liner is proportional to the square of the magnetic-field strength. Since in formulas (1.26) and (1.27), the 
parameter  T is the same, the times of magnetic-field action on both liners can also be considered identical. 
Under these assumptions, the ratio of the velocities of the liners v and v0 is obtained from the condition 
mv/(movo)  = [H(t)]2/[Ho(t)] 2 = ~, i.e., with allowance for (2.8), we have v/vo = ~rno/rn = ~/5. The ratio of 
the kinetic energies of the liners E and E0 is given by the formula E/Eo = mv2/(mov~) = ~z/6. 
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As an example, we consider a liner made of a composition of aluminum and mica, whose parameters 
are denoted by subscripts 1 and 2, respectively. In this liner, the thermal stability is determined by aluminum. 
The constants of the materials necessary for the calculation are taken from [14]: 

Density, g /cm '3 
Heat capacity, J / ( cm a. deg) 
Resistivity, 91 �9 cm 
Diffusivity, cm2/sec 
Thermal diffusivity, cm2/sec 

Aluminum Mica 

pl = 2.7 p2 = 2.8 
C1 = 2.5 C2 = 2.4 
rl = 2 . 7 . 1 0  .6 r 2 = 1 0  l~ 
D1 = 200 D2 = 8" 1017 

X1 = 0.9 ;g2 = 2 .10  -3 

The diffusivity is expressed in terms of the resistivity r as D = 109/(47r)r. 
The number  of layers is N and their thickness h should be selected so that the t ime of heat exchange 

tQ between the two components within a layer is shorter than the length of the field pulse tH. We denote the 
smaller thermal  diffusivity by X. Then, tQ = h2/x in the order of magnitude. The thickness of the layer is 
selected according to the inequality tQ <~ tH, i.e., 

h ~< , / x t . .  (2.1:3) 

For the above constants of the materials, X = X2 = 2-  10 -a cm2/sec. Substituting into (2.13) the value 
tH = 10-2 sec, which is typical of many facilities, we obtain h ~< 45 #m. In formula (1.19), we set k = 0.7. 
From (2.9) and (2.8), we have 7 = 0.9636 and 8 = 1.028. From (2.4) and (1.24), using the trial-and-error 
method, we find that  p = 0.8017, which, according to (2.10), corresponds to a value p0 = 8.9077. Then, fi'orn 
the formulas given above, we obtain U = 0.5843, S/L = 0.2609, u0 = 1.0103, So/L = 0.0340, S/So = 7.673,5, 

= 1.6601, H/Ho = v/~ = 1.2908, v/vo = 1.6207, and E/Eo = 2.6838. 
In the present example, using the composite liner, it is possible to increase the magnetic field by 30% 

without exceeding the permissible temperature. The velocity of the liner thus increases by a factor of 1.6. 
and the energy increases by a factor of 2.7. When the composite liner is used instead of the homogeneous 
liner, the dimension of the skin layer, defined by formula (1.16), increases by a factor of 7.7. Usually, the 
region occupied by the accelerating magnetic field usually far exceeds the liner thickness, and, hence, the 
magnetic-flux losses in both cases can be considered negligible. However, in some situations, for example, in 
considering MK-l - type  multistage setups [2, pp. 226], it is necessary to ensure passage of some part of the 
magnetic flux during acceleration of the liner for subsequent magnetic-flux compression by the accelerated 
liner. 

A patent  from the Russian Federation, No. 2107985, has been awarded received for the composite liner 
described above. 
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